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ABSTRACT

Acoustic tomography signal transmissions in the Monterey Bay is
modelled using the time-domain parabolic equation method of Collins and
Westwood (1991). Comparison of the model output with the measured
arrival structures obtained in Monterey Bay in 1988 shows that this
Fourier synthesis can produce good agreement with data. Furthermore,
identification of the measured modal arrivals is possible by decomposing
the PE model output into individual normai modes. Modal identification
provides for the application of tomography in shallow water.
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L. INTRODUCTION

In December, 1988, phase-encoded acoustic signals were transmitted
continuously for four days in the waters off Monterey, California to investigate
the feasibility of using tomography for ocean interior and surface monitoring in a
coastal environment.!* Sound arrival structures were measured from a source
(center frequency of 224 Hz and bandwidth of 16 Hz), located in the deep, 881 m,
sound channel to several receivers on the shallow, 100 m, adjacent continental
shelf (Fig. 1). The path from the source to the receiver at Station J is shown in Fig.
2. Every 16 received 1.9736 second time periods were coherently averaged. The
squared magnitude of every other averaged sequence is displayed as a function
of time in Fig. 3, for Station J starting on December 14. Stable arrival structures
were observed over the duration of the experiment for this path.

A successful application of tomography depends upon the stability,
resolvability and identifiability of the acoustic arrivals. If acoustic ray or mode
arrival structures are stable, and the individual arrivals have sufficient signal to
noise ratio (SNR) and are resolved in time, then the travel times of the rays or
modes can be estimated over the duration of the experiment. It is the nature of the
acoustic tomography technique that travel time perturbation time series be
calculated as the differences between the measured arrival times and modeled or
predicted times of arrivals. It is these time series which are the data for the inverse
problem. Therefore, to calculate the perturbation, the identification problem in
tomography must be solved where actual acoustic ray or mode arrivals are
associated with modeled or predicted arrivals. The arrivals in deep water can be

identified using ray theory.3-7




Ray tracing techniques had mixed success in modeling the propagation in
the shallow water of Monterey Canyon?, and in the Florida Straits.? In both these
cases, the number of rays present in shallow water became large enough to
prevent the identification of individual rays using a single receiver. In addition,
Smith found that acoustic rays were extremely sensitive to the exact bathymetry
specification of the Monterey Canyon continental slope.’

A full wave approach provides a more realistic model of the transmitted
signal in the presence of large bathymetric changes. The parabolic equation
method developed by Collins®-13 was chosen for this purpose due its energy
conservation scheme, and its ability to efficiently incorporate higher order terms
in its approximation of the Helmholtz equation. The steep continental slope gives
rise to higher order terms of significant magnitude, and Collins showed that
energy conservation is essential when modeling slopes in excess of ten degrees.’

Sound arrival identification is accomplished by the decomposition of the
pressure field generated by the PE model into normal modes. Additionally, this
process provides increased physical understanding of mode coupling and modal
sound transmission. Tomographic inverse methods using normal mode travel times
have been formulated within the context discussed by Munk and Wunsch for the

ocean interior, and Miller et al. for the surface.l43
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IL PRESSURE CALCULATION USING FOURIER SYNTHESIS

1. AT!MEDOMAIN APPROACH
The receiver time domain pressure signal can be determined, under the
assumption of linearity and time invariance, as a convolution of the source

pressure and the impulse response of the ocean waveguide:!*

<+o0

p(rr,zt)=| p(ro,2Zo,t-h(rg,7z9,1;,2,7)dT (1)

—_—0

where p is pressure, 1g is the source range, 1y is the receiver range, zg is source
depth, z; is receiver depth and t is time.
The Fourier transform of the convolution integral in the time domain is a

multiplication in the frequency domain:

P(1;,2,f) =P(r0,20,f) - H(ro,20,11,21) 2

Where P and H are the Fourier transforms of p and h respectively such that:

o0

P,z )= | P,z Hei2idf 3)

=00

and




(=~

h(ro, 20,1z, ) = |  H(ro, 2o, 17, 2, f)e-2rtdf )
Therefore, the pressure in the time domain can also be determined from the inverse

Fourier transform of (2):

(=]

p(t,zt)=| Piro,z0,HH(r0,20,1;,2 1) ei2nlidf 5)

2. DETERMINATION OF THE TRANSFER FUNCTION

The Helmholtz equation governs the sound pressure disturbances excited
by a point harmonic source. Therefore, the transfer function can be obtained by
solving the Helmholtz eqﬁation at different frequencies. Allowing for density

variation, the Helmholtz equation is:
PV- (V) +K°p = -4nBE-K) ©)

—

where k is the wave number, p is density, x is the position vector, and X; is the
spherical point source position vector.” Semi-analytical methods such as
geometric optics (i.e. ray theory) and separation of variables (i.e. normal modes or
fast field), as well as pure numerical schemes such as the parabolic equation
methods, can be used. However, as diffraction and dispersion can become
important at low frequencies, transfer functions obtained using full wave models,
such as normal mode or parabolic equation methods, are better. Normal mode
theory is most easily used in ocean environments which are horizontally stratified.
Methods exist which account for mode coupling effects resulting from non-

horizontal stratification and rough bathymetry.}>16 However, transfer functions




created using normal mode methods may require significant processing time and
storage for deep water regions where many modes are excited. Additionally,
separability of the bottom boundary condition can become questionable if rough
bathymetry exists.

In the past, the parabolic equation method has been limited to modelling
narrow angle sound energy propagation. However, current parabolic acoustic
models have been able to model sound with propagation angles close to 90
degrees.® 13 Furthermore, rough bathymetry and variable stratification are easily
implemented. Transfer functions constructed using parabolic approximations are
especially suited for low frequency, shallow water, rough bathymetry ocean

conditions.

3. PARABOLIC APPROXIMATION

Parabolic equation methods represent the acoustic pressure as the product
of two functions:

p(r,2) = u(r, 2)v(r)

where r is the range from the source to the receiver, so thatr =r.-rq
Computation time for a numerical solution is then reduced by expressing rapid
variations with range analytically, and leaving the slower variations in range to be
determined numerically. The analytic function v(r) changes rapidly with range,
while the numerical function, u(r,z), slowly varies in range but can vary rapidly
with depth.

Substituting (7) into the Helmholtz equation and neglecting the the
backscattered field results in a separable equation for the function v(r) which has

an exponential form. Following Collins!1, v(r) is:




V() = —e‘ kor ®)

Substituting for v(r) and factoring results in a parabolic equation for u(r,z) which

includes an unwieldy square root operator:

a—E“=ik0(11+x-1)u ©)
where
d° ar o
— k2 k2. k2 1
X_koz(k k§+ 32 T 929z

The square root operator has been simplified using either a
Taylor series!’, a rational function!® or a Padé series®!3 approximation. The Finite
Element Parabolic Equation (FEPE) of Collins uses a family of Padé series to
create higher order parabolic equations which are accurate for propagation
angles close to 90 degrees.?-13

Using Padé series, the FEPE approximates the square TOOt Operator as:

1+X-1= 2 %n X

i3 1+bJ n X
2 J1t
n = 2n+1 2n+l (10)
| 2 .17t
bJ,n =cos 2n+l1

The number of Padé terms used determines the angle of sound propagation which
can be accurately modelled. While the use of one term is equivalent to the wide
angle PE, having an approximately 40 degree propagation angle, the use of four
terms provides accuracy of close to 90 degrees depending on the ocean
environment. The amount of computer time required increases proportionally with
the number of Padé terms used.>13

Substituting the parabolic form for the frequency domain transfer function

(Eq. 7), the time domain pressure signal can be evaluated as:




(=<}

P, zt)= | P(ro,z0, Du(r, z Hv(r, fe-i2rfidf (11)

=00

Substituting for the chosen value of v(r)

o0
PO 20 = |  Plro, 20, Dulr, 2 el e-2ntaf (12)
-00
. 2nf . . .
Using the fact that ko = Y and combining exponential terms, (12) becomes:

p(rr, 2,1 =J P(ro, 20, Dutr, 2 fexpl-i2n(t - L) df  (13)

o0

With a change of time variable:

T
t=t-—
Co
T . ) . ;
where a) is the reference travel time of a plane wave solution, the resulting

pressure is

(==}

P, t) = | Plto,2 D, 2, Dk entidf (14)

=00

The integral expression is solved numerically using the inverse fast Fourier

transform (IFFT).

10




II. MODEL USE

1. MODEL INPUT

Modifications in FEPE_SYN, a prototype Fourier synthesis code
developed by Collins®-!? allowed for its use in modelling the acoustic
propagation from the transmitter to Station J in the Monterey Tomography
Experiment. The Blackman function was used to represent the transmitting signal
in the frequency domain. The center frequency of the function was 224 Hz, the
same as the actual source, with the function having zero values below 212 Hz
and above 236 Hz to represent the source's + 12 Hz bandwidth (Fig. 4). The
Blackman function provided a sharp but smooth cutoff above and below the
bandwidth, reducing the sidelobes in the time domain. The inverse Fourier
transform of the Blackman function closely approximated the output of the
correlator receiver used in the experiment.

The bathymetry used was obtained from NOAA! and had a grid spacing
of 250 meters. The SVP used was obtained near the transmitter during the 1988
Monterey Bay Experiment. The small variation between the sound velocity -
profile measured at the source and the receiver allowed the deep water SVP to be
used along the entire sound path (Fig. 5). Bottom sound speed, density and
attenuation were taken to be the average values for continental shelf silty sand as
obtained by Clay and Medwin.20

The sampling interval in the computational example is one millisecond (ms).
The resulting Nyquist frequency of 500 Hz, is more than twice the maximum

frequency used of 236 Hz. The time window starts 440 ms before the expected

11




arrival of a plane wave solution, travelling at a speed of cg, and arriving at time
t = r/co. The arrivals are tracked for 1600 ms after the reference plane wave

solution arrival.

2. COMPARISON OF MODEL OUTPUT WITH DATA

The resulting wide angle, one Padé term, computer modelled output
accounts for sound energy propagating accurately up to 40 degrees, and shows a
series of arrivals starting 140 ms after the plane wave reference (Fig. 6). A large
double peaked pulse is shown between two smaller peaks. Taking the higher
order terms into account, using two Padé terms, the constructive and destructive
interference of the higher order energy is seen as an increase in the amplitude of
the predicted signal, and a narrowing of the double peaked pulse to a single peak.
The major pulse amplitude is also increased (Fig. 7). The computer output from
the higher-order example shows good qualitative agreement with the measured
station J data.

The predicted and the measured results show an initial arrival, followed by
a narrow, larger pulse quickly followed by a series of smaller amplitude arrivals.
The spacing between the pulses and the relative amplitudes of the arrivals, both
plotted as amplitude squared in Fig. 8, are in agreement. The excellent agreement
of the higher-order model output with the measured data, versus that of the lower
order output, demonstrates the importance of including the higher-order terms in
modelling the Monterey Bay propagation. Higher-order terms can be important in
cases where steep bathymetry exists such as in this example.

Model output shows a sensitivity to the horizontal range step chosen. The

reproduction of the measured results, by the time domain model, required the use

12




of a 15 meter range step. The use of a larger range step produced arrivals of

excessive width, as shown in Fig. 9.

210 213 220 225 230 233 L
Proquescy (Hz)

Figure 4, Frequency domain source function used by the Finite Equation
Parabolic Equation (FEPE) Fourier synthesis parabolic equation model for
the Monterey Bay Experiment.
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Figure S. Sound velocity profile obtained from CTD measurements on
December 14, 1988 near the source.
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PE Mode! Output at Station J - 15 m Range Step
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Figure 6. Magnitude squared model output at Station J usinga 15m
horizontal range step and one Padé term.

PE ‘Mode! Output at Siation J - 15 m Range Step, 2 Padé Terms
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Figure 7. Magnitude squared model output at Station J using a 15 m range
step and two Padé terms.
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PE Model Output at Statlon J - 25 m Range Step, 2 Padé Teims .
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Figure 9. Magnitude squared model output at Station J using a 25 m range
step and two Padé terms.
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IV. NORMAL MODE APPLICATIONS

1. MODAL DECOMPOSITION
Modal decomposition provides a physically meaningful display of output
from the parabolic approximation. In addition, normal mode travel time
information can be used for tomographic inversion.!43 In particular, time domain
modal fluctuations can be used to determine the surface frequency spectrum, as
verified by surface buoys deployed in the 1988 Monterey Bay Experiment.!:4
Sound energy arriving at a receiver can be described as the sum of normal

modes (Fig. 10) Zm(z):

p(r,zt) = 2_,1 am(T, ) Z(1, 2, 1) (15)

where p is pressure, ap is the coefficient, Zy, is the eigenfunction, and m is the
mode number. Although there are an infinite number of modes possible, only
finite number of modes will be trapped in the ocean wave guide, depending on
the frequency, the depth of the channel, the SVP and the boundary conditions.20
The number of rapped modes at the receiver can be estimated by approximating
the coastal shelf area of Station J as an isospeed sound channel bounded by a
pressure release surface and a sediment bottom.
Thirteen trapped modes are estimated using the equation:
m<L(2hcose)+1 (16)

where m is the number of modes trapped, f is frequency, cgis the sound speed in

the channel, h is the water column depth.2’ The critical angle, 8¢, is defined by

17




sin6 1 (17)

Co 1

where c, is the sediment sound speed.

The modes are computed by solving:

(:—;+k2-k3,)zm =0 (18)

subject to the boundary conditions. The actual SVP and a finite difference
approximation are used.

Since Zm 's are orthogonal functions, i.e.,

J Z(r, )21, 2)dZ = O1n(2) (19)
0

the coefficient am's can be obtained by integrating the products of the computed

pressure and the normal modes:

©0

an=| pr,2z1) Zy1,2)dz (20)
0

The pressure time series can be seen at the Station J receiver for each mode in Fig.

11.

2. MODE IDENTIFICATION

Acoustic tomography requires that measured sound arrivals be identified
with the predicted arrivals. The maximum amplitude measured arrival is coincident
with the maximum predicted scund arrival. The sound arrival at station J can be
seen in Fig. 11 to be clearly dominated by mode 6 sound energy. The second
largest amplitude arrival, which just precedes the largest arrival, is also dominated

by mode six. However, modes one, five and eight are also represented. The use of

18




a hydrophone array instead of a single receiver should make it possible to

measure individual modal arrivals.

3. MODE COUPLING

Sound energy can be seen to move from higher to lower modes as sound
moves up the slope in Monterey Bay to Station J on the continental shelf, (Fig. 12
and Fig. 13). Relating normal modes to rays facilitates the explanation of this
occurrence. In this context, ray behavior can be seen as the constructive
interference of neighboring normal modes. Parameterizing mode quantities by
mode number and equivalent ray angle allows an "equivalent-ray” to be found
such that each resonance is centered at an equivalent-ray angle. These rays are
"fuzzy" in that they have finite width, and then a sound beam may be used to
represent a ray at a finite frequency.2122 The ray incident angles increase as
sound travels up the slope due to bottom interactions. Ray equivalent angles of
modes also in;:rease as the depth decreases.

Mode energy is concentrated in higher modes at the base of the slope,
with mode 18 dominant. The equivalent-ray angle is approximately 2.5 degrees,
as shown in Fig. 14. A ray propagating at this angle will interact with the bottom
only once on the slope. The bottom interaction will increase the incident angle at
the continental shelf to approximately 12 degrees. The mode which has the
resulting ray-equivalent angle of 12 degrees is mode six. Therefore, we would

expect that mode 6 energy will be dominant as is explained using a ray analogy.

19




Figure 10. Eigenfunctions calculated for Station J. The sound velocity profile
is also included.
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Figure 11. The magnitude of the model output pressure at the Station J
receiver as a function of time and normal mode number.
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Figure 12a. The magnitude squared for coefTicient a,, time series as a
function of mode number at ranges 42.50 and 45.25 km.
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Figure 12c. The magnitude squared for coefficient ap, time series as a function
of mode number at ranges 52.50 and 55.75 km (Station J).
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V. CONCLUSIONS

Fourier synthesis using the Collins-Westwood parabolic equation model is
effective in modeling short-duration time domain signals. Time domain parabolic
equation models can be used effectively in acoustically complex areas, such as
Monterey Canyon. Modeling propagation in areas with steep slopes require a
method which includes higher order terms and which conserves energy.

Model output from the Fourier synthesis parabolic equation model may be
decomposed into normal modes. This provides a tool for understanding acoustic
sound transmission. The use of a multiple hydrophone array should allow
identification of individual modal sound arrivals, thereby going a long way

toward solving the forward problem for acoustic tomography in shallow water.
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